北師大版九年級數(shù)學(xué)下冊《利用三角函數(shù)測高》直角三角形的邊角關(guān)系PPT精品課件,共34頁。
教學(xué)目標(biāo)
1、掌握坡度、坡比的概念,并靈活運用坡度、坡比的概念求出物體的高度;
2、能夠設(shè)計活動方案、自制測傾器和運用測傾器進行實地測量以及撰寫活動報告的過程;
3、能夠綜合運用直角三角形邊角關(guān)系的知識解決實際問題.
教學(xué)重點:利用已測量的數(shù)據(jù)綜合運用直角三角形邊角關(guān)系解決實際問題
教學(xué)難點:能夠綜合運用直角三角形邊角關(guān)系的知識解決實際問題.
問題1:在現(xiàn)實生活中需要測量像旗桿、高樓、塔等較高且頂部不可到達的物體的高度,根據(jù)我們所學(xué)的知識,同學(xué)們有哪些測量方案?
問題2:這些測量的方法都用到了什么知識?
問題3:如何利用直角三角形的邊角關(guān)系,測量底部不可以直接 到達的物體的高度呢?
活動一:測量傾斜角
使用測傾器測量傾斜角的步驟如下:
1.把支桿豎直插入地面,使支桿的中心線、鉛錘線和度盤的00刻度線重合,這時度盤的頂線PQ在水平位置.
2.轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)目標(biāo)M,記下此時鉛錘線所指的度數(shù).
活動二:測量底部可以到達的物體的高度.
所謂“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體的底部之間的距離.
如圖1-16,要測量物體MN的高度,可按下列步驟進行:
1.在測點A處安置測傾器,測得M的仰角∠MCE=α.
2.量出測點A到物體底部N的水平距離AN=l.
3.量出測傾器的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).
根據(jù)測量數(shù)據(jù),你能求出物體MN的高度嗎?說說你的理由.
典例精講
例1、如圖,某中學(xué)在主樓的頂部和大門的上方之間掛一些彩旗.經(jīng)測量,得到大門的高度是5m,大門距主樓的距離是30m,在大門處測得主樓頂部的仰角是30°,而當(dāng)時測傾器離地面1.4m,求學(xué)校主樓的高度(精確到0.01m).
總結(jié):與仰角(或俯角)有關(guān)的計算問題的解決方法:首先弄清哪個角是仰角(或俯角),再選擇或構(gòu)造恰當(dāng)?shù)闹苯侨切,將仰角或俯角置于這個三角形中,選擇正確的三角函數(shù),并借助計算器求出要求的量.
活動三:測量底部不可以到達的物體的高度.
所謂“底部不可以到達”,就是在地面上不能直接測得測點與被測物體的底部之間的距離.
1.在測點A處安置測傾器,測得此時M的仰角∠MCE=α.
2.在測點A與物體之間的B處安置測傾器(A,B與N在一條直線上,且A,B之間的距離可以直接測得),測得此時M的仰角∠MDE=β.
歸納概念
總結(jié):從同一點看不同的位置,有兩個視角,不同位置之間有距離,作垂線將兩個視角都放在直角三角形中,利用不同位置之間的距離列方程來解決問題.
... ... ...
關(guān)鍵詞:利用三角函數(shù)測高PPT課件免費下載,直角三角形的邊角關(guān)系PPT下載,.PPTX格式