全站首頁(yè)|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學(xué)課件 > 人教高中數(shù)學(xué)A版必修一 > 《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT

《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT

《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT 詳細(xì)介紹:

《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT

《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT

第一部分內(nèi)容:課標(biāo)闡釋

1.理解勻速圓周運(yùn)動(dòng)數(shù)學(xué)模型的特點(diǎn),并能用數(shù)學(xué)模型解決一些相關(guān)的實(shí)際問題.

2.會(huì)用“五點(diǎn)法”作函數(shù)y=Asin(ωx+φ)的圖象.

3.理解參數(shù)A,ω,φ對(duì)函數(shù)y=Asin(ωx+φ)圖象的影響.

4.掌握函數(shù)y=Asin(ωx+φ)與y=sin x圖象之間的關(guān)系,能夠?qū)=sin x的圖象通過變換得到函數(shù)y=Asin(ωx+φ)的圖象.

... ... ...

函數(shù)y=Asin(ωx+φ)PPT,第二部分內(nèi)容:自主預(yù)習(xí)

一、勻速圓周運(yùn)動(dòng)數(shù)學(xué)模型

1.填空

(1)三角函數(shù)數(shù)學(xué)模型在模擬一些周期現(xiàn)象時(shí)應(yīng)用十分廣泛,但一般都能概括為y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B的形式.

(2)三角函數(shù)作為描述現(xiàn)實(shí)世界中周期現(xiàn)象的一種數(shù)學(xué)模型,可以用來研究很多問題,在刻畫周期規(guī)律、預(yù)測(cè)未來方面發(fā)揮著重要作用.

2.做一做

如圖,點(diǎn)P是半徑為r的砂輪邊緣上的一個(gè)質(zhì)點(diǎn),它從初始位置P0開始,按逆時(shí)針方向以角速度ω(rad/s)做圓周運(yùn)動(dòng),則點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t的函數(shù)關(guān)系式為__________

解析:當(dāng)質(zhì)點(diǎn)P從P0轉(zhuǎn)到點(diǎn)P位置時(shí),點(diǎn)P轉(zhuǎn)過的角度為ωt,

則∠POx=ωt+φ,由任意角的三角函數(shù)定義知點(diǎn)P的縱坐標(biāo)y=rsin(ωt+φ).

答案:y=rsin(ωt+φ)

3.判斷正誤

(1)三角函數(shù)是描述現(xiàn)實(shí)世界中周期變化現(xiàn)象的重要函數(shù)模型. (  )

(2)與周期有關(guān)的實(shí)際問題都必須用三角函數(shù)模型解決. (  )

答案:(1)√ (2)×

二、圖象變換

1.φ對(duì)函數(shù)y=sin(x+φ),x∈R的圖象的影響

(1)在同一平面直角坐標(biāo)系中,用“五點(diǎn)法”作出函數(shù)y=sin(x+π/3)與y=sin(x"-"  π/4)的圖象,從表中所列變量的值以及畫出的圖象兩個(gè)方面進(jìn)行觀察分析,y=sin(x+φ)的圖象與y=sin x的圖象之間有什么關(guān)系?

提示:y=sin(x+φ)的圖象可以由函數(shù)y=sin x的圖象經(jīng)過左右平移|φ|個(gè)單位得到.

(2)填空

如圖,函數(shù)y=sin(x+φ)(φ≠0)的圖象,可以看作是把y=sin x的圖象上所有的點(diǎn)向左(當(dāng)φ>0時(shí))或向右(當(dāng)φ<0時(shí))平行移動(dòng)|φ|個(gè)單位長(zhǎng)度得到的.

(3)做一做

將函數(shù)y=sin x的圖象向右平移π/5個(gè)單位,可以得到函數(shù)(  )的圖象.

A.y=sin(x+π/5) B.y=sin(x"-"  π/5)

C.y=sin(π/5 "-" x) D.y=sin(5x"-"  π/5)

解析:將函數(shù)y=sin x的圖象向右平移π/5個(gè)單位,可以得到函數(shù)y=sin(x"-"  π/5)的圖象.

2.ω(ω>0)對(duì)函數(shù)y=sin(ωx+φ)的圖象的影響

(1)在同一平面直角坐標(biāo)系中,用“五點(diǎn)法”作出函數(shù)y=sin 2x與y=sin   x的圖象,從列表中變量的值以及畫出的圖象兩個(gè)方面進(jìn)行觀察分析,y=sin(ωx+φ)的圖象與y=sin(x+φ)的圖象之間有什么關(guān)系?

提示:y=sin(ωx+φ)的圖象可以由函數(shù)y=sin(x+φ)的圖象經(jīng)過左右伸縮變換得到.

(2)填空

如圖,函數(shù)y=sin(ωx+φ)的圖象,可以看作是把y=sin(x+φ)的圖象上所有點(diǎn)的橫坐標(biāo)縮短(當(dāng)ω>1時(shí))或伸長(zhǎng)(當(dāng)0<ω<1時(shí))到原來的   倍(縱坐標(biāo)不變)而得到.

... ... ...

函數(shù)y=Asin(ωx+φ)PPT,第三部分內(nèi)容:探究學(xué)習(xí)

勻速圓周運(yùn)動(dòng)的數(shù)學(xué)模型

例1一個(gè)大風(fēng)車的半徑為6 m,12 min旋轉(zhuǎn)一周,它的最低點(diǎn)P0離地面2 m,風(fēng)車翼片的一個(gè)端點(diǎn)P從P0開始按逆時(shí)針方向旋轉(zhuǎn),則點(diǎn)P離地面距離h(m)與時(shí)間m(min)之間的函數(shù)關(guān)系式是(  )

A.h(t)=-6sinπ/6t+6 B.h(t)=-6cosπ/6t+6

C.h(t)=-6sinπ/6t+8 D.h(t)=-6cosπ/6t+8

分析:由題意可設(shè)h(t)=Acos ωt+B,根據(jù)周期性   =12,由最大值與最小值分別為14,2,即可得出.

解析:設(shè)h(t)=Acos ωt+B,

∵12 min旋轉(zhuǎn)一周,∴2π/ω=12,∴ω=π/6.

由于最大值與最小值分別為14,2,

∴{■("-" A+B=14"," @A+B=2"," )┤解得{■(A="-" 6"," @B=8"." )┤∴h(t)=-6cosπ/6t+8.

答案:D

反思感悟  勻速圓周運(yùn)動(dòng)的數(shù)學(xué)模型一般都?xì)w結(jié)為正弦型或余弦型函數(shù)形式.此類問題的切入點(diǎn)是初始位置及其半徑、頻率的值要明確,半徑?jīng)Q定了振幅A,頻率或周期能確定ω,初始位置不同對(duì)φ有影響.還要注意最大值與最小值與函數(shù)中參數(shù)的關(guān)系.

... ... ...

函數(shù)y=Asin(ωx+φ)PPT,第四部分內(nèi)容:思維辨析

三角函數(shù)圖象平移變換規(guī)則不清致誤 

典例 為了得到y(tǒng)=sin 1/2x的圖象,只需要將y=sin(1/2 x"-"  π/6)的圖象(  )

A.向左平移π/6個(gè)單位 B.向右平移π/6個(gè)單位

C.向左平移π/3個(gè)單位 D.向右平移π/3個(gè)單位

錯(cuò)解由y=sin1/2x的圖象得y=sin(1/2 x"-"  π/6)的圖象時(shí),∵φ=-π/6,∴向左平移π/6個(gè)單位.故選A.

錯(cuò)解錯(cuò)在什么地方?你能發(fā)現(xiàn)嗎?怎樣避免這類錯(cuò)誤呢?

提示:錯(cuò)解中有3個(gè)錯(cuò)誤點(diǎn):①審題不清,沒有弄清楚哪一個(gè)函數(shù)圖象移動(dòng)變換得另一個(gè)函數(shù)圖象.②平移方向上應(yīng)該是“左加右減”,在錯(cuò)解中,由y=sin1/2x得y=sin(1/2 x"-"  π/6)的圖象時(shí)應(yīng)該向右平移.③平移的單位長(zhǎng)度由于忽視了x的系數(shù)導(dǎo)致錯(cuò)誤.

正解:∵y=sin(1/2 x"-"  π/6)=sin1/2 (x"-"  π/3),

∴當(dāng)由y=sin(1/2 x"-"  π/6)的圖象得y=sin1/2x的圖象時(shí),應(yīng)該是向左平移π/3個(gè)單位.

答案:C

... ... ...

函數(shù)y=Asin(ωx+φ)PPT,第五部分內(nèi)容:隨堂演練

1.將函數(shù)y=sin x+π/6 的圖象上所有的點(diǎn)向左平移π/4個(gè)單位長(zhǎng)度,再把圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍(縱坐標(biāo)不變),則所得圖象的解析式為(  )

A.y=sin 2x+5π/12 B.y=sin x/2+5π/12 

C.y=sin x/2-π/12 D.y=sin x/2+5π/24 

解析:平移后得解析式為y=sin x+π/4+π/6 =sin x+5π/12 ,再把圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍得解析式為y=sin x/2+5π/12 ,故選B.

答案:B 

2.將函數(shù)y=sin 2x的圖象向右平移π/2個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)是(  )

A.奇函數(shù) B.偶函數(shù)

C.既是奇函數(shù)又是偶函數(shù)  D.非奇非偶函數(shù)

解析:y=sin 2x的圖象向右平移π/2個(gè)單位長(zhǎng)度得到函數(shù)y=sin[2(x"-"  π/2)]=sin(2x-π)=-sin(π-2x)=-sin 2x的圖象.因?yàn)?sin(-2x)=sin 2x,所以是奇函數(shù).

答案:A

... ... ...

關(guān)鍵詞:高中人教A版數(shù)學(xué)必修一PPT課件免費(fèi)下載,函數(shù)y=Asin(ωx+φ)PPT下載,三角函數(shù)PPT下載,.PPT格式;

《函數(shù)y=Asin(ωx+φ)》三角函數(shù)PPT 下載地址:

本站素材僅供學(xué)習(xí)研究使用,請(qǐng)勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

熱門PPT課件
最新PPT課件
相關(guān)PPT標(biāo)簽