全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學課件 > 人教高中數(shù)學A版必修一 > 《三角函數(shù)的應用》三角函數(shù)PPT

《三角函數(shù)的應用》三角函數(shù)PPT

《三角函數(shù)的應用》三角函數(shù)PPT 詳細介紹:

《三角函數(shù)的應用》三角函數(shù)PPT《三角函數(shù)的應用》三角函數(shù)PPT《三角函數(shù)的應用》三角函數(shù)PPT《三角函數(shù)的應用》三角函數(shù)PPT

《三角函數(shù)的應用》三角函數(shù)PPT

第一部分內(nèi)容:課標闡釋

1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.

2.會用三角函數(shù)模型解決簡單的實際問題.

3.初步學會使用分析數(shù)據(jù)或圖象特征進行一些簡單的函數(shù)擬合.

... ... ...

三角函數(shù)的應用PPT,第二部分內(nèi)容:自主預習

一、三角函數(shù)的應用

1.簡諧運動

(1)對于函數(shù)y=Asin(ωx+φ),其最值、周期分別與哪些參數(shù)有關(guān)?如果一個簡諧振動,其解析式是y=3sin(πx+π/6),結(jié)合物理學知識,其振幅、周期、初相分別是多少?

提示:函數(shù)y=Asin(ωx+φ)的最值與A有關(guān),周期與ω有關(guān);對于簡諧振動y=3sin(πx+π/6),其振幅等于3,周期是2,初相為π/6.

(2)填空

在y=Asin(ωx+φ),x∈[0,+∞)(A>0,ω>0)中,各參數(shù)的物理意義. 

(3)做一做

簡諧振動y=1/3sin(x/4+π/5)的振幅、周期、初相分別為(  )

A.1/3,π/2,π/5 B.1/3,8π,π/5

C.-1/3,8π,π/5 D.1/3,8π,4π/5

解析:因為A=1/3,ω=1/4,所以周期T=2π/(1/4)=8π,故振幅為1/3,初相φ=π/5.

答案:B 

二、應用三角函數(shù)模型解決問題的一般程序

1.填空

應用三角函數(shù)模型解決問題,首先要把實際問題抽象為數(shù)學問題,通過分析它的變化趨勢,確定它的周期,從而建立起適當?shù)娜呛瘮?shù)模型,解決問題的一般程序如下:

(1)審題,先審清楚題目條件、要求、理解數(shù)學關(guān)系.

(2)建模,分析題目周期性,選擇適當?shù)娜呛瘮?shù)模型.

(3)求解,對所建立的三角函數(shù)模型進行分析研究得到數(shù)學結(jié)論.

(4)還原,把數(shù)學結(jié)論還原為實際問題的解答.

2.做一做

如圖是相對于平均海平面的某海灣的水面高度h(單位:米)在某天從0~24時的變化情況,則水面高度h關(guān)于時間t的函數(shù)關(guān)系式為________________.

三角函數(shù)模型在日常生活中的應用

例1心臟跳動時,血壓在增加或減少.血壓的最大值、最小值分別稱為收縮壓和舒張壓,血壓計上的讀數(shù)就是收縮壓和舒張壓,讀數(shù)120/80 mmHg為標準值.設(shè)某人的血壓滿足函數(shù)式p(t)=115+25sin 160πt,其中p(t)為血壓(單位:mmHg),t為時間(單位:min),試回答下列問題:

(1)求函數(shù)p(t)的周期;

(2)求此人每分鐘心跳的次數(shù);

(3)畫出函數(shù)p(t)的草圖;

(4)求出此人的血壓在血壓計上的讀數(shù).

分析:函數(shù)解析式已知,可根據(jù)周期公式以及周期與頻率的關(guān)系解決(1)(2).用“五點作圖法”解決(3).由函數(shù)解析式或圖象得出函數(shù)的最大值以及最小值即得血壓在血壓計上的讀數(shù)從而得(4).

... ... ...

三角函數(shù)的應用PPT,第三部分內(nèi)容:思維辨析

不能正確理解簡諧運動的過程致誤

典例 彈簧振子以點O為平衡位置,在B,C間做簡諧運動,B,C相距20 cm,某時刻振子處在點B,經(jīng)0.5 s振子首次達到點C.求:

(1)振動的振幅、周期和頻率;

(2)振子在5 s內(nèi)通過的路程及這時位移的大小.

錯解(1)因為B,C相距20 cm,

所以振幅A=20 cm.

因為從點B經(jīng)0.5 s振子首次達到點C,

所以周期T=0.5 s,頻率f=1/T=2.

(2)5 s內(nèi)的路程=位移=5A=5×20=100 cm.

錯解錯在什么地方?你能發(fā)現(xiàn)嗎?怎樣避免這類錯誤呢?

提示:振子以O(shè)為平衡位置,在B,C間做簡諧運動,B,C相距20 cm,說明振子離開平衡位置的最大值和最小值點相距20 cm,即振幅的2倍等于20 cm;振子從點B經(jīng)0.5秒首次到達點C,再返回點B才是一個周期,因此,應有   =0.5 s;路程與位移有區(qū)別,路程只有大小,位移不僅有大小,還有方向.錯解中由于對周期的概念理解不清導致周期求錯,另外,混淆了路程與位移直接的區(qū)別導致結(jié)果錯誤.

... ... ...

三角函數(shù)的應用PPT,第四部分內(nèi)容:隨堂演練

1.函數(shù)y=3sin("-" x+π/6)的相位和初相分別是(  )

A.-x+π/6,π/6 B.x-π/6,-π/6

C.x+5π/6,5π/6 D.x+5π/6,π/6

解析:因為y=3sin("-" x+π/6)

=3sin[π"-" ("-" x+π/6)]=3sin(x+5π/6),

所以相位和初相分別是x+5π/6,5π/6.

答案:C 

2.如圖是一向右傳播的繩波在某一時刻繩子各點的位置圖,經(jīng)過  周期后,乙的位置將移至(  )

A.x軸上 B.最低點 C.最高點 D.不確定

解析:相鄰的最大值與最小值之間間隔半個周期,故乙移至最高點.

答案:C

3.如圖所示是一個簡諧運動的圖象,則下列判斷正確的是 (  )

A.該質(zhì)點的振動周期為0.7 s

B.該質(zhì)點的振幅為-5 cm

C.該質(zhì)點在0.1 s和0.5 s時的振動速度最大

D.該質(zhì)點在0.3 s和0.7 s時的位移為零

解析:由題中圖象及簡諧運動的有關(guān)知識知,T=0.8 s,A=5 cm.當t=0.1 s或0.5 s時,v為零.

答案:D

... ... ...

關(guān)鍵詞:高中人教A版數(shù)學必修一PPT課件免費下載,三角函數(shù)的應用PPT下載,三角函數(shù)PPT下載,.PPT格式;

《三角函數(shù)的應用》三角函數(shù)PPT 下載地址:

本站素材僅供學習研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

  • 《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT教學課件

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT教學課件

    北師大版九年級數(shù)學下冊《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT教學課件,共26頁。 情境引入 我們已經(jīng)知道輪船在海中航行時,可以用方位角準確描述它的航行方向. 那你知道如何結(jié)合方位角等數(shù)據(jù)進行計算,幫助輪船在航行中遠離危險嗎? 講授新課 與方位角..

  • 《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第2課時)

    《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第2課時)

    人教高中數(shù)學A版必修一《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第2課時),共23頁。 整體感知 問題1 勻速圓周運動、簡諧運動和交變電流都是理想化的運動變化現(xiàn)象,可以用三角函數(shù)模型準確地描述它們的運動變化規(guī)律,其中分別是通過什么方法構(gòu)建得到其中的函數(shù)..

  • 《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第1課時)

    《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第1課時)

    人教高中數(shù)學A版必修一《三角函數(shù)的應用》三角函數(shù)PPT教學課件(第1課時),共18頁。 整體感知 問題1 你能列舉一些生活中具有周期性現(xiàn)象的例子嗎?前面已經(jīng)用三角函數(shù)模型刻畫過哪些周期性現(xiàn)象? 答案:生活中周期性現(xiàn)象的例子大致有三種類型: (1)勻速圓周..

  • 《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT下載

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT下載

    北師大版九年級數(shù)學下冊《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT下載,共15頁。 獲取新知 觀察地圖你能說出沈陽在北京的什么方向嗎? 方位角 如圖,海中有一小島A,該島四周10 n mile內(nèi)有暗礁.今有貨輪由西向東航行,開始在A島南偏西55的B處,往東行駛20..

  • 《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT課件

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT課件

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT課件,共16頁。 知識要點基礎(chǔ) 知識點1 方向角問題 1.如圖,一艘輪船A位于燈塔P的南偏東37方向,且距離燈塔50海里,它沿正北方向航行一段時間后,到達位于燈塔P的正東方向上的B處,這時B處與燈塔P的距離可以表示為 ( B )..

  • 《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT(第2課時)

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT(第2課時)

    《三角函數(shù)的應用》直角三角形的邊角關(guān)系PPT(第2課時),共24頁。 教學目標 1.正確理解方位角、仰角和坡角的概念;(重點) 2.能運用解直角三角形知識解決方位角、仰角和坡角的問題.(難點) ... ... ... 新課導入 情境引入 仰角: 在進行測量時,從下向上看,視..

熱門PPT課件
最新PPT課件
相關(guān)PPT標簽