全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學課件 > 人教高中數(shù)學B版必修二 > 《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT

《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT

《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT 詳細介紹:

《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT

《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT

第一部分內(nèi)容:課標闡釋

1.能運用指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的性質(zhì)來解決某些簡單的實際問題.

2.了解函數(shù)模型在社會生活及科研中的廣泛應用.

3.培養(yǎng)應用數(shù)學的意識以及分析問題、解決問題的能力.

... ... ...

函數(shù)的應用PPT,第二部分內(nèi)容:課前篇自主預習

一、幾種常見的函數(shù)模型 

函數(shù)模型 函數(shù)解析式

一次函數(shù)模型f(x)=ax+b(a,b為常數(shù),a≠0)

二次函數(shù)模型f(x)=ax2+bx+c(a,b,c為常數(shù),a≠0)

與指數(shù)函數(shù)相關的模型f(x)=bax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)

與對數(shù)函數(shù)相關的模型f(x)=blogax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)

與冪函數(shù)相關的模型f(x)=axn+b(a,b,n為常數(shù),a≠0)

二、三種函數(shù)模型性質(zhì)的比較

1.填空.

y=ax(a>1) y=logax(a>1) y=xn(n>0)

在(0,+∞)上的單調(diào)性 增函數(shù) 增函數(shù) 增函數(shù)

增長速度 越來越快 越來越慢 相對平穩(wěn)

圖像的變化  隨x值增大,圖像與y軸接近平行 隨x值增大,圖像與x軸接近平行 隨n值變化而不同

2.做一做:某同學在一次數(shù)學實驗中,獲得了如下一組數(shù)據(jù):

則x,y的函數(shù)關系最接近(其中a,b為待定系數(shù))函數(shù)(  )

A.y=a+bx

B.y=bx

C.y=ax2+b

答案:B

... ... ...

函數(shù)的應用PPT,第三部分內(nèi)容:課堂篇探究學習

指數(shù)函數(shù)模型

例1諾貝爾獎發(fā)放方式為:每年一發(fā),把獎金總額平均分成6份,獎勵給分別在物理、化學、文學、經(jīng)濟學、生理學和醫(yī)學、和平上為人類做出最有益貢獻的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息作基金總額,以便保證獎金數(shù)逐年增加.假設基金平均年利率為r=6.24%.資料顯示:2015年諾貝爾獎發(fā)放后基金總額約為19 800萬美元.設f(x)表示第x(x∈N+)年諾貝爾獎發(fā)放后的基金總額.(2015年記為f(1),2016年記為f(2),…,依次類推)

(1)用f(1)表示f(2)與f(3),并根據(jù)所求結(jié)果歸納出函數(shù)f(x)的表達式;

(2)試根據(jù)f(x)的表達式判斷網(wǎng)上一則新聞“2025年度諾貝爾獎各項獎金高達150萬美元”是否為真,并說明理由.(參考數(shù)據(jù):1.031 29≈1.32)

分析:指數(shù)型函數(shù)模型的應用是高考的一個主要內(nèi)容,常與增長率相結(jié)合進行考查.在實際問題中,有人口增長、銀行利率、細胞分裂等增長問題可以用指數(shù)型函數(shù)模型來表示.通?杀硎緸閥=a(1+p)x(其中a為原來的基礎數(shù),p為增長率,x為時間)的形式.

解:(1)由題意知f(2)=f(1)(1+6.24%)-   f(1)·6.24%=f(1)×(1+3.12%),

f(3)=f(2)×(1+6.24%)-   f(2)×6.24%

=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,

∴f(x)=19 800(1+3.12%)x-1(x∈N+).

(2)2024年諾貝爾獎發(fā)放后基金總額為f(10)=19 800(1+3.12%)9≈26 136,

故2025年度諾貝爾獎各項獎金為       f(10)·6.24%≈136(萬美元),與150萬美元相比少了約14萬美元,是假新聞.

反思感悟指數(shù)函數(shù)模型的應用

指數(shù)函數(shù)y=ax(a>1)經(jīng)復合可以得到指數(shù)型函數(shù),指數(shù)型函數(shù)的函數(shù)值變化較快,指數(shù)型函數(shù)函數(shù)值的增長速度隨底數(shù)不同而不同,并且根據(jù)已知數(shù)據(jù)的關系能建立起模型,進而能對未知進行推斷.

變式訓練1某城市現(xiàn)有人口總數(shù)為100萬,如果年自然增長率為1.2%,試解答下面的問題.

(1)寫出該城市的人口總數(shù)y(萬)與年數(shù)x(年)的函數(shù)關系式;

(2)計算10年后該城市人口總數(shù)(精確到0.1萬);

(3)計算大約多少年后該城市人口總數(shù)將達到120萬(精確到1年)((1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.21).

解:(1)1年后該城市人口總數(shù)為y=100+100×1.2%=100×(1+1.2%)(萬);

2年后該城市人口總數(shù)為y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2(萬);

3年后該城市人口總數(shù)為y=100×(1+1.2%)3(萬);

該城市人口總數(shù)y(萬)與年數(shù)x(年)的函數(shù)關系式為y=100×(1+1.2%)x.

(2)10年后該城市人口總數(shù)為y=100×(1+1.2%)10≈100×1.127≈112.7(萬).

(3)令y=120,則有100×(1+1.2%)x=120,

解方程可得x≈16,

即大約16年后該城市人口總數(shù)將達到120萬.

對數(shù)函數(shù)模型

例2 某地一漁場的水質(zhì)受到了污染.漁場的工作人員對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m(m∈N+)個單位的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中f(x)={■(log_3 "(" x+4")(" 0<x≤5")," @6/(x"-" 2) "(" x>5")," )┤當藥劑在水中釋放的濃度不低于6(毫克/升)時稱為有效凈化;當藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時稱為最佳凈化.

(1)如果投放的藥劑質(zhì)量為m=6,那么漁場的水質(zhì)達到有效凈化一共可持續(xù)幾天?

(2)如果投放的藥劑質(zhì)量為m,為了使在8天(從投放藥劑算起包括第8天)之內(nèi)的漁場的水質(zhì)達到最佳凈化,試確定應該投放的藥劑質(zhì)量m的取值范圍.

... ... ...

函數(shù)的應用PPT,第四部分內(nèi)容:思維辨析

因未弄清函數(shù)類型而致誤

典例 某林區(qū)2018年木材蓄積量為200萬立方米,由于采取了封山育林、嚴禁砍伐等措施,使木材蓄積量的年平均增長率達到5%.

(1)若經(jīng)過x年后,該林區(qū)的木材蓄積量為y萬立方米,求y=f(x)的表達式,并求此函數(shù)的定義域;

(2)求經(jīng)過多少年后,林區(qū)的木材蓄積量能達到300萬立方米.

錯解:(1)現(xiàn)有木材蓄積量為200萬立方米,經(jīng)過1年后木材蓄積量為200+200×5%=200(1+5%);

經(jīng)過2年后木材蓄積量為200(1+5%×2);

經(jīng)過x年后木材蓄積量為200(1+5%·x).

所以y=f(x)=200(1+5%·x)(x∈N+).

(2)設x年后木材蓄積量為300萬立方米,

正解:(1)現(xiàn)有木材蓄積量為200萬立方米.

經(jīng)過1年后木材蓄積量為200+200×5%=200(1+5%);

經(jīng)過2年后木材蓄積量為200(1+5%)+200(1+5%)×5%=200(1+5%)2;

所以經(jīng)過x年后木材蓄積量為200(1+5%)x.

所以y=f(x)=200(1+5%)x(x∈N+).

(2)由200(1+5%)x=300,得(1+5%)x=1.5,取值驗證可知8<x<9,所以取x=9,即經(jīng)過9年后,林區(qū)的木材蓄積量能達到300萬立方米.

防范措施對此類問題首先要弄清題目,木材蓄積量年平均增長問題實質(zhì)上為一指數(shù)函數(shù)類模型.若初始蓄積量為a,年平均增長率為b%,則x年后木材蓄積量y與x的關系為y=a(1+b%)x,x∈N+.另外還有儲蓄等問題也屬于指數(shù)型函數(shù)模型.因此大家在學習過程中多積累實際素材,每一類實際問題都有其自身的規(guī)律特點.

... ... ...

函數(shù)的應用PPT,第五部分內(nèi)容:當堂檢測

1.(多選)某種商品2018年提價25%,2020年要降價,但不能低于原價,則可以降價(  )

A.25% B.20% C.15% D.10%

答案:BCD

2.某研究小組在一項實驗中獲得一組關于y,t之間的數(shù)據(jù),將其整理后得到如下的圖像,下列函數(shù)中,最能近似刻畫y與t關系的是(  )

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D

解析:此曲線符合對數(shù)函數(shù)的變化趨勢.

... ... ...

關鍵詞:高中人教B版數(shù)學必修二PPT課件免費下載,函數(shù)的應用PPT下載,指數(shù)函數(shù)對數(shù)函數(shù)與冪函數(shù)PPT下載,.PPT格式;

《函數(shù)的應用》指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)PPT 下載地址:

本站素材僅供學習研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關的PPT課件:

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第3課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第3課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第3課時),共32頁。 素養(yǎng)目標 1. 進一步訓練識圖能力,通過函數(shù)圖象獲取信息,解決簡單的實際問題. 2. 在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)數(shù)形結(jié)合意識,發(fā)展形象思維. 探究新知 兩個一次函..

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第2課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第2課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第2課時),共31頁。 素養(yǎng)目標 1. 會利用一次函數(shù)的圖像和關系式解決簡單實際問題. 2. 了解一元一次方程與一次函數(shù)的聯(lián)系. 3. 經(jīng)歷用函數(shù)圖象表示一元一次方程的過程,進一步體會以形表示數(shù),以..

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第1課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第1課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質(zhì)課件(第1課時),共23頁。 素養(yǎng)目標 1.理解待定系數(shù)法的意義. 2.學會運用待定系數(shù)法和數(shù)形結(jié)合思想求一次函數(shù)解析式. 探究新知 待定系數(shù)法求一次函數(shù)的解析式 某物體沿一個斜坡下滑,它的速度 v (米..

  • 《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時)

    《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時)

    北師大版九年級數(shù)學下冊《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時),共19頁。 教學目標 1、熟練掌握用二次函數(shù)的性質(zhì)求出商品利潤的最大值問題,學會根據(jù)具體情況,由二次函數(shù)的性質(zhì),表示出正確的最大值; 2、學會根據(jù)實際問題的自變量的取值范圍求出..

  • 《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時)

    《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時)

    北師大版九年級數(shù)學下冊《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時),共38頁。 學習目標 1.分析實際問題中變量之間的二次函數(shù)關系.(難點) 2.會運用二次函數(shù)求實際問題中的最大值或最小值. 3.能應用二次函數(shù)的性質(zhì)解決圖形中最大面積問題.(重點) 導..

  • 《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件

    《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件

    北師大版九年級數(shù)學下冊《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件,共26頁。 情境引入 我們已經(jīng)知道輪船在海中航行時,可以用方位角準確描述它的航行方向. 那你知道如何結(jié)合方位角等數(shù)據(jù)進行計算,幫助輪船在航行中遠離危險嗎? 講授新課 與方位角..

熱門PPT課件
最新PPT課件
相關PPT標簽