全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學課件 > 人教高中數(shù)學B版必修一 > 《函數(shù)的奇偶性》函數(shù)PPT

《函數(shù)的奇偶性》函數(shù)PPT

《函數(shù)的奇偶性》函數(shù)PPT 詳細介紹:

《函數(shù)的奇偶性》函數(shù)PPT《函數(shù)的奇偶性》函數(shù)PPT《函數(shù)的奇偶性》函數(shù)PPT《函數(shù)的奇偶性》函數(shù)PPT

《函數(shù)的奇偶性》函數(shù)PPT

第一部分內(nèi)容:課標闡釋

1.結(jié)合具體函數(shù),了解函數(shù)的奇偶性的含義.

2.能根據(jù)奇偶性的定義判斷和證明函數(shù)的奇偶性.

3.能利用奇偶性來研究函數(shù)的定義域、值域、解析式、單調(diào)性及函數(shù)的圖像等.

... ... ...

函數(shù)的奇偶性PPT,第二部分內(nèi)容:自主預習

知識點一、奇、偶函數(shù)的定義

1.思考

(1)①已知函數(shù)f(x)=1/x^2 ,試求函數(shù)的定義域,并分別對x取±1,±2,±3,±1/2,±1/3,…算出函數(shù)值f(x),你能發(fā)現(xiàn)什么規(guī)律?

提示:y=1/x^2 的定義域為{x|x≠0},經(jīng)過對一系列互為相反數(shù)的x值代入函數(shù)式可得:若x的取值互為相反數(shù),則其函數(shù)值相等.即對x∈{x|x≠0}總有f(-x)=f(x)成立,我們把這類函數(shù)稱為偶函數(shù).

②你還能得出函數(shù)f(x)=x5在x∈R時仍有上述(1)問中的規(guī)律嗎?

提示:f(x)=x5滿足的規(guī)律是對x∈R,總有f(-x)=-f(x)成立,我們把這類函數(shù)稱為奇函數(shù).

(2)一個函數(shù)具有奇偶性,其定義域有什么特點?

提示:一個函數(shù)若具有奇偶性,其定義域一定關于原點對稱,這等價于定義中的“對D內(nèi)的任意一個x,都有-x∈D”這一說法.

2.填寫下表:

設函數(shù)y=f(x)的定義域為D,如果對D內(nèi)的任意一個x,都有-x∈D,

3.做一做

(1)下列函數(shù)是偶函數(shù)的為(  )

A.y=2|x|-1,x∈[-1,2]

B.y=x3-x2

C.y=x3

D.y=x2,x∈[-1,0)∪(0,1]

答案:D

(2)下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的為(  )

A.y=x-1 B.y=3x2

C.y=1/2x D.y=-x|x|

答案:D

知識點二、奇、偶函數(shù)的圖像特征

1.思考

(1)如果f(x)的圖像關于原點對稱,且函數(shù)在x=0處有定義,那么f(0)為何值?

提示:f(x)的圖像關于原點對稱,即f(x)為奇函數(shù),故滿足f(-x)=-f(x).因為f(x)在x=0處有定義,所以f(0)=-f(0),即f(0)=0.

(2)若f(x)為奇函數(shù),且點(x,f(x))在其圖像上,則哪一個點一定在其圖像上?若f(x)為偶函數(shù)呢?

提示:若f(x)為奇函數(shù),則點(-x,-f(x))一定在其圖像上;若f(x)為偶函數(shù),則點(-x,f(x))一定在其圖像上.

2.填空

(1)偶函數(shù)的圖像關于y軸對稱;反之,結(jié)論也成立,即圖像關于y軸對稱的函數(shù)一定是偶函數(shù).

(2)奇函數(shù)的圖像關于原點對稱;反之,結(jié)論也成立,即圖像關于原點對稱的函數(shù)一定是奇函數(shù).

名師點撥 奇函數(shù)在其對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在其對稱區(qū)間上的單調(diào)性相反;若奇函數(shù)f(x)在區(qū)間[a,b](0<a<b)上有最大值M,最小值m,則f(x)在區(qū)間[-b,-a]上的最大值為-m,最小值為-M;偶函數(shù)f(x)在區(qū)間[a,b],[-b,-a](0<a<b)上有相同的最大(小)值.

... ... ...

函數(shù)的奇偶性PPT,第三部分內(nèi)容:探究學習

判斷函數(shù)的奇偶性

例1判斷下列函數(shù)的奇偶性:

(1)f(x)=√(x"-" 1)+√(1"-" x);

(2)f(x)=√(x^2 "-" 1)+√(1"-" x^2 );

(3)f(x)=x2-2|x|+1,x∈[-1,1];

(4)f(x)=(x-2)√((x+2)/(x"-" 2));

(5)f(x)=(x-2)√((2+x)/(2"-" x))(|x|<2).

分析:先求定義域,驗證定義域是否關于原點對稱,再看f(-x)與f(x)的關系,進而做出判斷.

解:(1)∵由{■(x"-" 1≥0"," @1"-" x≥0)┤知x=1.

∴函數(shù)f(x)的定義域為{x|x=1},不關于原點對稱,

故f(x)既不是奇函數(shù)也不是偶函數(shù).

(2)∵由{■(x^2 "-" 1≥0"," @1"-" x^2≥0"," )┤得x2=1,即x=±1.

∴函數(shù)f(x)的定義域是{x|x=±1},關于原點對稱.

又∵f(x)=0,∴f(x)既是奇函數(shù)也是偶函數(shù).

(3)函數(shù)的定義域為[-1,1],關于原點對稱.

∵f(-x)=(-x)2-2|-x|+1=x2-2|x|+1=f(x),

∴f(x)是偶函數(shù).

反思感悟如何判斷函數(shù)的奇偶性

1.判斷函數(shù)的奇偶性一般不用其定義,而是利用定義的等價形式,即考察f(-x)與f(x)的關系,具體步驟如下:

(1)求f(x)的定義域;

(2)若定義域不關于原點對稱,則函數(shù)f(x)不具有奇偶性,若定義域關于原點對稱,可再利用定義驗證f(-x)與f(x)的關系.

2.對于一些較復雜的函數(shù),也可以用如下性質(zhì)判斷函數(shù)的奇偶性:

(1)偶函數(shù)的和、差、積、商(分母不為零)仍為偶函數(shù);

(2)奇函數(shù)的和、差仍為奇函數(shù);

(3)奇(偶)數(shù)個奇函數(shù)的積、商(分母不為零)為奇(偶)函數(shù);

(4)一個奇函數(shù)與一個偶函數(shù)的積為奇函數(shù).

... ... ...

函數(shù)的奇偶性PPT,第四部分內(nèi)容:思維辨析

利用函數(shù)的單調(diào)性與奇偶性解不等式

典例 設定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù),若f(1-m)<f(m),求實數(shù)m的取值范圍.

解:因為f(x)是奇函數(shù)且f(x)在[0,2]上是減函數(shù),所以f(x)在[-2,2]上是減函數(shù).

所以不等式f(1-m)<f(m)等價于{■(1"-" m>m"," @"-" 2≤m≤2"," @"-" 2≤1"-" m≤2"," )┤解得-1≤m<1/2.

方法點睛 利用函數(shù)奇偶性和單調(diào)性解不等式

解決此類問題時一定要充分利用已知的條件,把已知不等式轉(zhuǎn)化成f(x1)>f(x2)或f(x1)<f(x2)的形式,再根據(jù)奇函數(shù)在對稱區(qū)間上的單調(diào)性一致,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,列出不等式(組),同時不能漏掉函數(shù)自身定義域?qū)?shù)的影響.

... ... ...

函數(shù)的奇偶性PPT,第五部分內(nèi)容:當堂檢測

1.(多選)下列函數(shù)是偶函數(shù)的為(  )

A.f(x)=x2 B.f(x)=x

C.f(x)=     D.f(x)=x2+x4

答案:AD

2.有下列說法:

①偶函數(shù)的圖像一定與y軸相交;

②若y=f(x)是奇函數(shù),則由f(-x)=-f(x)可知f(0)=0;

③既是奇函數(shù)也是偶函數(shù)的函數(shù)一定是f(x)=0,x∈R;

④若一個圖形關于y軸成軸對稱,則該圖形一定是偶函數(shù)的圖像.

其中不正確的是(  )

A.①② B.①④ C.①②④ D.①②③④

解析:①中可舉反例f(x)=x2+2,x∈(-∞,-2)∪(2,+∞);②中f(x)在x=0處可能無定義;③中也可以是f(x)=0,x∈A(A為關于原點對稱的數(shù)集);④中該圖形可能不是函數(shù)的圖像.故①②③④均錯誤.

答案:D

3.若f(x)=x5+5x3+bx-8,且f(-2)=10,則f(2)=_________. 

解析:∵f(-2)=(-2)5+5(-2)3+b(-2)-8=10,

∴25+5×23+2b=-18.

∴f(2)=25+23×5+2b-8=-18-8=-26.

答案:-26

... ... ...

關鍵詞:高中人教B版數(shù)學必修一PPT課件免費下載,函數(shù)的奇偶性PPT下載,函數(shù)PPT下載,.PPT格式;

《函數(shù)的奇偶性》函數(shù)PPT 下載地址:

本站素材僅供學習研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關的PPT課件:

熱門PPT課件
最新PPT課件
相關PPT標簽