《正多邊形與圓》PPT課件2
想一想
正三角形
三條邊相等,三個角相等(60°)
正方形
四條邊相等,四個角相等(90°)
正多邊形定義
各邊相等,各角也相等的多邊形是正多邊形.
正n 邊形:如果一個正多邊形有n 條邊,那么這個正多邊形叫做正n 邊形.
... ... ...
探索新知
你知道正多邊形與圓的關(guān)系嗎?
正多邊形和圓的關(guān)系非常密切,只要把一個圓分成相等的一些弧,就可以作出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓.
我們以圓內(nèi)接正五邊形為例證明.
如圖,把⊙O分成相等的5段弧,依次連接各分點得到正五邊形ABCDE.
∵AB=BC=CD=DE=EA
∴AB=BC=CD=DE=EA,
∴BCE=CDA=3AB
∴ ∠A=∠B.
同理∠B=∠C=∠D=∠E.
又∵五邊形ABCDE的頂點都在⊙O上,
∴ 五邊形ABCDE是⊙O的內(nèi)接正五邊形,
⊙O是五邊形ABCDE的外接圓.
... ... ...
概念學(xué)習(xí)
①我們把一個正多邊形的外接圓(內(nèi)切圓)的圓心叫做這個正多邊形的中心(即點O)
②外接圓的半徑叫做正多邊形的半徑(即OA)
③正多邊形每一邊所對的圓心角叫做正多邊形的中心角(即∠AOB )
④中心到正多邊形的一邊的距離叫做正多邊形的邊心距(內(nèi)切圓的半徑、即OM)
同步練習(xí)
1、正方形ABCD的外接圓圓心O叫做正方形ABCD的中心
2、正方形ABCD的內(nèi)切圓的半徑OE叫做正方形ABCD的邊心距
3、圖中正六邊形ABCDEF的中心角是∠AOB它的度數(shù)是60度
4、你發(fā)現(xiàn)正六邊形ABCDEF的半徑與邊長具有什么數(shù)量關(guān)系?為什么?
... ... ...
鞏固練習(xí)
1.正八邊形的每個內(nèi)角是______度.
2.如圖,正六邊形ABCDEF內(nèi)接于⊙O,則∠CFD的度數(shù)是( )
A. 60° B. 45° C. 30° D. 22.5°
3.如果一個正多邊形繞它的中心旋轉(zhuǎn)90°就與原來的圖形重合,那么這個正多邊形是( )
A.正三角形 B.正方形
C.正五邊形 D.正六邊形
4.已知正六邊形的邊心距為√3,則它的周長是_____.
... ... ...
探索新知
怎樣畫一個正多邊形呢?
問題1:已知⊙O的半徑為2cm,求作圓的內(nèi)接正三角形.
①用量角器度量,使∠AOB=∠BOC=∠COA=120°.
②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.
你能尺規(guī)作出正六邊形、正三角形、正十二邊形嗎?
以半徑長在圓周上截取六段相等的弧,依次連結(jié)各等分點,則作出正六邊形.
先作出正六邊形,則可作正三角形,正十二邊形,正二十四邊形………
... ... ...
課堂小結(jié)
一、正多邊形的性質(zhì):
1、正多邊形的各邊相等
2、正多邊形的各角相等
二、正多邊形的計算:
三、畫正多邊形的方法
1.用量角器等分圓
2.尺規(guī)作圖等分圓
關(guān)鍵詞:正多邊形與圓教學(xué)課件,青島版九年級上冊數(shù)學(xué)PPT課件下載,九年級數(shù)學(xué)幻燈片課件下載,正多邊形與圓PPT課件下載,.PPT格式;