全站首頁(yè)|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學(xué)課件 > 人教高中數(shù)學(xué)A版必修一 > 《任意角》三角函數(shù)PPT

《任意角》三角函數(shù)PPT

《任意角》三角函數(shù)PPT 詳細(xì)介紹:

《任意角》三角函數(shù)PPT《任意角》三角函數(shù)PPT《任意角》三角函數(shù)PPT《任意角》三角函數(shù)PPT

《任意角》三角函數(shù)PPT

第一部分內(nèi)容:課標(biāo)闡釋

1.掌握用“旋轉(zhuǎn)”定義角的概念,結(jié)合具體實(shí)例理解“正角”“負(fù)角”及“零角”的定義.

2.理解“象限角”“終邊相同角”的定義,掌握所有與角α終邊相同的角(包括角α)的表示方法.

3.體會(huì)用運(yùn)動(dòng)變化的觀點(diǎn),深刻理解推廣后的角的概念.

... ... ...

任意角PPT,第二部分內(nèi)容:自主預(yù)習(xí)

一、任意角

1.(1)初中所學(xué)的角是如何定義的?初中學(xué)過(guò)哪些角?初中學(xué)過(guò)的角的范圍是什么?

提示:具有公共頂點(diǎn)的兩條射線組成的圖形;銳角、直角、鈍角、平角、周角;0°<α≤360°.

(2)在奧運(yùn)會(huì)比賽中,跳水是極具觀賞性的項(xiàng)目,其中解說(shuō)員經(jīng)常播報(bào)出場(chǎng)運(yùn)動(dòng)員完成的動(dòng)作難度系數(shù)和一些動(dòng)作名稱.比如說(shuō)“107B”就表示向前翻騰3周半屈體,“107C”就是向前翻騰3周半抱膝(第三個(gè)數(shù)字表示翻騰的周數(shù),以“1”為半圓,“2”為一周,“3”為一周半,以此類(lèi)推).若一位跳水運(yùn)動(dòng)員做了一個(gè)“5253B”動(dòng)作,你知道這位運(yùn)動(dòng)員翻騰的周數(shù)嗎?怎樣度量這種形式的角呢?

提示:5253B中第3個(gè)數(shù)是5,說(shuō)明該運(yùn)動(dòng)員翻騰兩周半,對(duì)這樣的角的認(rèn)識(shí)必須將以前學(xué)過(guò)的角的概念進(jìn)行推廣.

2.填空

(1)角的概念:平面內(nèi)的一條射線繞著它的端點(diǎn)旋轉(zhuǎn)所成的圖形.

(2)角的分類(lèi):按旋轉(zhuǎn)方向可將角分為三類(lèi)

溫馨提示:1.在不引起混淆的前提下,“角α”或“∠α”可以簡(jiǎn)記成“α”;

2.如果α是零角,那么記α=0°.

二、第幾象限角

1.如果將一個(gè)角放到平面直角坐標(biāo)系中,且使角α的始邊與x軸的非負(fù)半軸重合,角的頂點(diǎn)與原點(diǎn)重合,回答以下問(wèn)題:

(1)α=45°的角終邊落在第幾象限?

提示:第一象限.

(2)α=120°的角終邊落在第幾象限?

提示:第二象限.

(3)α=-90°的角終邊落在第幾象限?

提示:y軸的負(fù)半軸上.

(4)若α終邊落在第二象限,則角φ的范圍是多少?

提示:90°+k·360°<φ<180°+k·360°,k∈Z.

(5)若將α的終邊再繼續(xù)旋轉(zhuǎn)角β得到的角如何表示?

提示:α+β

2.填空

象限角的定義

(1)前提:

①角的頂點(diǎn)與原點(diǎn)重合;

②角的始邊與x軸的非負(fù)半軸重合.

(2)結(jié)論:角的終邊在第幾象限,就說(shuō)這個(gè)角是第幾象限角;

角的終邊在坐標(biāo)軸上,就說(shuō)這個(gè)角不屬于任何一個(gè)象限.

三、終邊相同的角

1.在同一平面直角坐標(biāo)系內(nèi)作出30°,390°,-330°,750°角,觀察它們的終邊有什么關(guān)系,這些角之間相差多少度?

提示:終邊在相同的位置,它們之間相差360°的整數(shù)倍.

2.填空

一般地,所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合:S={β|β=α+k·360°,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整數(shù)個(gè)周角的和.

... ... ...

任意角PPT,第三部分內(nèi)容:探究學(xué)習(xí)

任意角的概念及其表示

例1(1)經(jīng)過(guò)2個(gè)小時(shí),鐘表的時(shí)針和分針轉(zhuǎn)過(guò)的角度分別是(  )

A.60°,720°   B.-60°,-720°

C.-30°,-360°  D.-60°,720°

(2)下圖中的角α的度數(shù)是___________. 

解析:(1)鐘表的時(shí)針和分針都是順時(shí)針旋轉(zhuǎn),因此轉(zhuǎn)過(guò)的角度都是負(fù)的,而2/12×360°=60°,2×360°=720°,故鐘表的時(shí)針和分針轉(zhuǎn)過(guò)的角度分別是-60°,-720°.

(2)要正確識(shí)圖,確定好旋轉(zhuǎn)的方向和旋轉(zhuǎn)的大小.因?yàn)榻?alpha;旋轉(zhuǎn)的大小是360°-30°=330°,旋轉(zhuǎn)方向是逆時(shí)針,所以α=330°.

答案:(1)B (2)330°

反思感悟 確定任意角的方法:

(1)定方向:明確該角是由順時(shí)針?lè)较蜻是逆時(shí)針?lè)较蛐D(zhuǎn)形成的,由逆時(shí)針?lè)较蛐D(zhuǎn)形成的角為正角,順時(shí)針?lè)较蛐D(zhuǎn)形成的角為負(fù)角.

(2)定大小:根據(jù)旋轉(zhuǎn)角度的絕對(duì)量確定角的大小.

變式訓(xùn)練1(1)把一條射線繞著端點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)240°所形成的角是(  )

A.120° B.-120°

C.240° D.-240°

(2)圖中角α=__________,β=__________. 

解析:(1)一條射線繞著端點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)240°所形成的角是-240°,故選D.

(2)由題圖可知α=-(180°-30°)=-150°,β=30°+180°=210°.

答案:(1)D (2)-150° 210°

坐標(biāo)系中角的概念及其表示

角度1 終邊相同的角的求解

例2寫(xiě)出與75°角終邊相同的角的集合,并求在360°~1 080°范圍內(nèi)與75°角終邊相同的角.

分析:根據(jù)與角α終邊相同的角的集合為S={β|β=k·360°+α,k∈Z},寫(xiě)出與75°角終邊相同的角的集合,再取適當(dāng)?shù)膋值,求出360°~1 080°范圍內(nèi)的角.

解:與75°角終邊相同的角的集合為

S={β|β=k·360°+75°,k∈Z}.

當(dāng)360°≤β<1 080°時(shí),即360°≤k·360°+75°<1 080°,

解得19/24≤k<219/24.

又k∈Z,所以k=1或k=2.

當(dāng)k=1時(shí),β=435°;

當(dāng)k=2時(shí),β=795°.

綜上所述,與75°角終邊相同且在360°~1 080°范圍內(nèi)的角為435°角和795°角.

反思感悟 求與已知角α終邊相同的角時(shí),要先將這樣的角表示成k·360°+α(k∈Z)的形式,然后采用賦值法求解或解不等式,確定k的值,求出滿足條件的角.

... ... ...

任意角PPT,第四部分內(nèi)容:思維辨析

對(duì)任意角的概念不清導(dǎo)致角的范圍寫(xiě)錯(cuò)

典例 寫(xiě)出終邊在如圖所示陰影部分內(nèi)的角的集合.

錯(cuò)解一終邊為OA的角為k·360°+30°(k∈Z),

終邊為OB的角為k·360°+150°(k∈Z),

所以終邊在陰影部分內(nèi)的角的集合為{α|k·360°+30°<α<k·360°+150°,k∈Z}.

錯(cuò)解二終邊為OA的角為k·360°+30°(k∈Z),終邊為OB的角為k·360°+150°(k∈Z),

所以終邊在陰影部分內(nèi)的角的集合為{α|k·360°+150°<α<k·360°+30°,k∈Z}.

以上解答過(guò)程中都有哪些錯(cuò)誤?出錯(cuò)的原因是什么?你如何訂正?怎么防范?

提示:錯(cuò)解一考慮了角的大小,但表示的是終邊落在陰影部分以外的角;錯(cuò)解二沒(méi)有注意到角的大小,寫(xiě)出的集合是空集.

正解:因?yàn)殛幱安糠趾瑇軸正半軸,所以終邊為OA的角為β=30°+k·360°,k∈Z,終邊為OB的角為γ=-210°+k·360°,k∈Z.所以終邊在陰影部分內(nèi)的角的集合為{α|-210°+k·360°≤α≤30°+k·360°,k∈Z}.

防范措施 1.用不等式表示區(qū)域角的范圍時(shí),要注意觀察角的集合形式是否能夠合并,能合并的一定要合并.

2.對(duì)于區(qū)域角的書(shū)寫(xiě),一定要看其區(qū)域是否跨越x軸的正方向.

... ... ...

任意角PPT,第五部分內(nèi)容:隨堂演練

1.下列敘述正確的是(  )

A.三角形的內(nèi)角必是第一或第二象限角

B.始邊相同而終邊不同的角一定不相等

C.第四象限角一定是負(fù)角

D.鈍角比第三象限角小

解析:90°角是三角形的內(nèi)角,它不是第一或第二象限角,故A錯(cuò);280°角是第四象限角,它是正角,故C錯(cuò);-100°角是第三象限角,它比鈍角小,故D錯(cuò).

答案:B

2.把-1 485°化成k·360°+α(0°≤α<360°,k∈Z)的形式是(  )

A.315°-5×360° B.45°-4×360°

C.-315°-4×360° D.-45°-10×180°

解析:∵0°≤α<360°,∴排除C,D選項(xiàng),經(jīng)計(jì)算可知選項(xiàng)A正確.

答案:A

3.-495°角的終邊與下列哪個(gè)角的終邊相同(  )

A.135° B.45° C.225° D.-225°

解析:因?yàn)?495°=-2×360°+225°,所以與-495°角終邊相同的是225°角.故選C.

答案:C

4.與-2 018°角終邊相同的最小正角是     . 

解析:∵-2 018°=-6×360°+142°,∴所求值為142°.

答案:142°

... ... ...

關(guān)鍵詞:高中人教A版數(shù)學(xué)必修一PPT課件免費(fèi)下載,任意角PPT下載,三角函數(shù)PPT下載,.PPT格式;

《任意角》三角函數(shù)PPT 下載地址:

本站素材僅供學(xué)習(xí)研究使用,請(qǐng)勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

  • 《任意角和弧度制》三角函數(shù)PPT課件(第2課時(shí)弧度制)

    《任意角和弧度制》三角函數(shù)PPT課件(第2課時(shí)弧度制)

    《任意角和弧度制》三角函數(shù)PPT課件(第2課時(shí)弧度制) 第一部分內(nèi)容:學(xué) 習(xí) 目 標(biāo) 1.了解弧度制下,角的集合與實(shí)數(shù)集之間的一一對(duì)應(yīng)關(guān)系. 2.理解弧度的角的定義,掌握弧度與角度的換算、弧長(zhǎng)公式和扇形面積公式,熟悉特殊角的弧度數(shù).(重點(diǎn)、難點(diǎn)) 3.了解角..

  • 《任意角和弧度制》三角函數(shù)PPT課件(第1課時(shí)任意角)

    《任意角和弧度制》三角函數(shù)PPT課件(第1課時(shí)任意角)

    《任意角和弧度制》三角函數(shù)PPT課件(第1課時(shí)任意角) 第一部分內(nèi)容:學(xué) 習(xí) 目 標(biāo) 1.理解任意角的概念. 2.掌握終邊相同角的含義及其表示.(重點(diǎn)、難點(diǎn)) 3.掌握軸線角、象限角及區(qū)間角的表示方法.(難點(diǎn)、易混點(diǎn)) 核 心 素 養(yǎng) 1.通過(guò)終邊相同角的計(jì)算,培養(yǎng)..

  • 《任意角和弧度制》三角函數(shù)PPT(第二課時(shí)弧度制)

    《任意角和弧度制》三角函數(shù)PPT(第二課時(shí)弧度制)

    《任意角和弧度制》三角函數(shù)PPT(第二課時(shí)弧度制) 第一部分內(nèi)容:學(xué)習(xí)目標(biāo) 了解弧度制的概念 能進(jìn)行角度與弧度之間的互化 能用弧度制表示終邊相同的角 理解弧度制下扇形的弧長(zhǎng)與面積公式 ... ... ... 任意角和弧度制PPT,第二部分內(nèi)容:自主學(xué)習(xí) 問(wèn)題導(dǎo)學(xué) 預(yù)..

  • 《任意角和弧度制》三角函數(shù)PPT(第一課時(shí)任意角)

    《任意角和弧度制》三角函數(shù)PPT(第一課時(shí)任意角)

    《任意角和弧度制》三角函數(shù)PPT(第一課時(shí)任意角) 第一部分內(nèi)容:學(xué)習(xí)目標(biāo) 理解任意角的概念,能區(qū)分各類(lèi)角 掌握終邊相同的角的含義及其表示方法 掌握象限角的概念并能用集合表示各類(lèi)象限角及區(qū)域角 ... ... ... 任意角和弧度制PPT,第二部分內(nèi)容:自主學(xué)習(xí)..

熱門(mén)PPT課件
最新PPT課件
相關(guān)PPT標(biāo)簽